Game Theory Optimisation for Energy Systems Integration

Mel Devine
University College Dublin
25th May 2018
• Game theory optimisation
 • Mixed Complementarity Models
 • Bi-level Optimisation
 • Typically involve stochastic optimisation

- Conventional Generator maximizing profits
- Wind generator maximizing profits
- Consumers Minimising cost
Applications: energy market\systems modelling
 • Electricity market modelling
 • Market Investment Model
 • Demand Response
 • Power to gas
 • Feed-in Tariffs & Renewable Energy Auctions
 • Capacity markets
 • Gas market modelling

Limitations
 • Does not account for integer variables... yet
Example: Electricity Market Investment Model

Generators:

- Maximise profit
- Decisions:
 - Generation
 - Investment/Decommission
- **May exert market power

Consumers:

- Minimise costs
- Decisions:
 - PV or micro generation
 - Load shifting/shedding
 - Investment in storage, PV, Micro generation
Model Uses for Energy Systems Integration

• Research questions so far...
 1. How does Demand Response affect different consumer groups, generator profits, generation investments?
 2. How does market power affect the above?
 3. Power-to-gas
 • Optimal investment in power-to-gas

• Potential areas for collaboration
 • Model does not account for engineering and network constraints
The graph illustrates the consumer costs (in million €) for different levels of load shifting (%). The costs are compared across various load levels: 600 MW, 400 MW, 200 MW, 0 MW, and 600 MW (No MP). As load shifting increases, the consumer costs generally decrease, showing a clear trend for each load level.
Questions

mel.devine@ucd.ie

https://sites.google.com/site/meldevine07/