Model validation, benchmarking, calibration – some open questions

Erik Delarue – KU Leuven & EnergyVille
May 25, 2018, Copenhagen
Some terminology

- Model verification
 - Confirming that model is correctly implemented

- Model benchmarking
 - Comparing model performance with other models

- Transparency & reproducibility

- Model validation
 - Accuracy of the model's representation of the real system
 - Model outcome versus reality
Perspective and time scales

- Device/single actor perspective
 - Control
 - Bidding strategy
 - Power plant operation/commitment

- System level perspective
 - Operation of power plants
 - System planning – investment
The LUSYM model determines the **optimal unit commitment and economic dispatch** decision for a set of power plants, in order to meet a given electricity demand at **lowest operational cost**.

Input
- Conventional power plant portfolio (fixed)
- Technical characteristics of each power plant (e.g. minimum power output)
- Cost characteristics of each power plant (e.g. fuel cost, start-up cost)
- Interconnection capacity
- Hourly demand, possibly with part of it being flexible
- Hourly generation from renewables and cogeneration

Model
- Mixed-integer linear program
- Minimizes operational system cost
- Assumes perfect competition
- Deterministic/stochastic
- Hourly time resolution
- Renewables curtailment possible
- Network limitations
- Outages implicit in the model

Output
- Hourly generation schedule
- Hourly generation cost
- Hourly CO₂ emissions
- Hourly regional prices
- Hourly transmission flows
- Hourly curtailed load
An example
LUSYM: Set-up of the standard unit commitment model

- Model benchmarking
An example
LUSYM: Set-up of the standard unit commitment model

• Calibration
 o Power plant availability
 o Maintenance schedules
 o Power plant efficiencies (or other uncertain input data)
 o Fuel price?
 o Cross-border exchanges?
 o …

• To what extent do calibration measures hold in counterfactual scenario?
An example
LUSYM: Set-up of the standard unit commitment model

- Model validation
 - Fuel shares
 - Annual basis

(c) Coal generation (TWh/year).
(d) Gas generation (TWh/year).
An example
LUSYM: Set-up of the standard unit commitment model

- Model validation
 - Cross-border exchanges \Rightarrow net import
 - Annual basis
An example
LUSYM: Set-up of the standard unit commitment model

- Model validation
 - Hourly electricity prices
An example
LUSYM: Set-up of the standard unit commitment model

- Model validation
 - Hourly electricity prices
Reflections

• Use of this type of models
 o Model runs should be compared to one-another
 o Observe impact of certain modifications/boundary conditions/scenarios

• But what if (reference) model outcome departs (too) much from reality?

• To what extent can conclusions hold?
Reflections

- Good practices for calibration?
- Good practices in model use?
- Model versus data-driven approaches?